

RIOLRCHE SEET ROFOTOMERRIOHR:"

Relatore grof. G. abstti

I Seaina "Teoria dagli indici e teorema di sturn Padatore Exof. G. Manaone

II mesina "Oscillator armonico txidimenatonelo. iv coordinate antandent -

Relatore Prot. G. Mranchett

Arcatrat, ottobze 1948

I M M R O D U 2 I O N E

All'astronomo che si acoinge ad eseguire misure di spettrom fotometria, si pressata 11 probleme di ricercare sotto quall condizioni debba essere eseguita L'osservazione, affinche le misure che se ne possono ottenexe diano i migliori risultati poscthils. G1 tratta osobs por un dato strumento di ossarvazione di conoscere quali sono i valow di tutti i fattori che intervengono in un'esperienza. per 1 quali si ha un "optimum" nel risultato sinale dell'espexienza stessa.

Un esempio sexvixa a chiarire questo punto di vista. Un fattore che in tutte le osservazioni di carattere astronomico, viene ad influire sulle condizioni di sperienza, è quello del1e condiztoni atmosferiche. E' evidente che I'astronomo non puo agire direttanente per mutare in suo favore condizioni atmosferiche avverse: egli puo tuttavia conformare i propri mezzi di osseryazione alle mutevoli condizioni del cielo, in modo da ot-
tenere di volta in volta quanto di meglio sia possibile. (1) Se ad esemplo un fenomeno periodice a periodo molto lungo, Ia cui osservazione non pub essexe ximandata, cade contemporanemente alla lune plena, I'astronomo dovxà tenere conto che la brillanza B_{c} del cielo al fuoco dell'apparechio, è In tal caso tutt altro che trascurabile, a quindi dovra scegliexe un materiale fotografico tale che per l'esposizione B t non dia velo sulla lastra. Nello stesso tempo pero, chiamata B_{s} la brillanza dolla stella, I'eaposizione B_{s} deve essere tale da pexmettere di esegulre le misure. Mutto questo si potra ottenere, una volta fissato 12 rapporto $\mathrm{B}_{\mathrm{s}} / \mathrm{B}_{\mathrm{c}}$ solo se si usa materiale fotografico contrasto sufficientemente alto.

Pex quel che riguarda 10 strumento di osservazione poi, ci troviamo di fronte an fattore per il quale quasi sempre l'a-
(1) Proprio seguendo questo oriterio gli osservatori moderni. Hengono costruiti in localita in cui si abbia il massimo nutero possibile di ore serene nell'ano in oul l'atmosfera sia sufficientemente limpida tranquilla in modo da permettere di ottenere una buona "qualita dell'immagine".
stronomo non è libero di disporre. Ben raramente egli può scegliere volta per volta 10 strumento che pit si confà alLe necessita dell"espexienza. Anche qui pero sexà opportuno sfrutbare al massimo i vantaggi presentati dallo strumento stesso, nei limiti delle possibilita. Cosi, gli spettri stellari che si possono ottenere con un riflettore a prismi, sono ben lontani dal possedere la purezaa che si ha con uno spettroscopio a fenditura. Muttavia adoprando material fotografico ad alto potere risolutivo, oi si metterà nelle condizioni migiori di oservazione, perchè da questo punto di Vista si ottwxà quanto di meglio lo strumento può dure.

Da quanto precede si puo desumere la notevole importanza ohe ha tra I'altro, la scelta dell'emulsione fotografica pis adatta per le osservazioni astronomiche in generele per quelle astrofisiche in particolare. Si delinea cioe la necessita di studiare da butti i punti di vista il rendimento del matexiale fotografico, cercando una relazione che permetta poi, a chiunque si aceinga a sperimentare, di decidere a priom
ri per la scelta dell'mulsione 11 oui uso ai presenta pily opportuno, una rolta che siano fissate le altre condizioni dell saperienza.

D1 tale complasso gtudio, no of siamo limitati ad affrontaxe un aspotto particolare nel traxce perd le conclusiont del nostro lavoro, abbiamo ceroato di non pardere di vista 31 problema piut generale in out osso si inquadra. Non meno necessario dallesame delle proprieta delle emulsioni, si presenta poi 10 studio del rendimento dello strumento, che nel caso delle osservazioni melative a ricerche spettrofotometriche esegulte all'Osservatoxio di Arcetri. è un riflettore a prismi. Senza intendere di dare una risposta completa ed esauriente questa questione, si e cercato tuttavia di fomire unindicazione del punto a cui puo arrivare La resa dello strumento, sulla base dei dati sperimentali ricavati da osservaziont da noi eseguite di alouni spettri stel2axd tipsot.

```
Oap. I - NOMIZIE SMORIOHW=
```

Per uno sperimentatore ohe si deve sexvixe di un mulsione fotograflea, in particolare pax un astronomo, sarebbe aesiderabile conoscere con esatterza la legge che govema 1 fenoment fotochimial che svvengono nello streto, conoscere ciob come dinenda la densita fotografica da tutti i parametxi che int Exvengono durgnte I'esposizione lo eviluppo.

In tal caso 10 sperimentatore potrebbe mettersi a priori nells oondzioni "optimum", ossia scegliere par tutti i fattori che ontrano in gioco, quad valowi che in welazione con 1- Gigenze della propria sperienza, gli permettono di raggiungere 1 miglowi xisultatio

Ma per tale legge generale dell'azione totogralica non b ancore stata trovata un'espressione soddisfacente. Si sa infatti che la dencita dipende da un gran numero di parametri. tra cui I'111uminamento, 11 tempo di posa, la composizione oromatica della sorgene Ia sensibilità cromatica dell'emulsione. La temperatura ambiente le condizioni di sviluppo.
gi e occoto allox di semplificare il pit possibile il problema readendo costante 11 magetor numero di parametri. operando per esempio lunghezza d'onda per lunghezza d'onda. sullo steseo tipo di mulsione, in condizioni di sviluppo Adentiche. Th questo modo si conservano solo i paremetri puu importantl agl altri potrano risultare tutt al piu come errori acotdentali che st compenseranno fino che possibile, oon la ripetixione delle misure. Cosi operando, non resta ohe da cexcare la relazione fra L'Iluminamento micevuto dall' emulstone. 11 tempo di posa e 1 'anmeximento otbenuto dopo Io oparazioni di sviluppo, ossia Ia funzione $D=D(I, t)$. con D dansita. I illumananento, tompo.

I primi studi in questo campo furono compluts da Bunsen

- Roscoe. i quali nal 1876 emunoiarono la legge di reciprocits trat at ossia stablitrono che gli eftetti otbenuti tapressionando uno strato sensibile con un determinato valore dal grodotto It, gono gli stessi, qualunque stano separatamente 1 valori di I a di questo concetto si puo sintetiz-
zare sorivendo che e $\mathrm{D}=$ cost, pef It $=$ cost .
In prole moderne cio significa ohe l'emulstone darebbe un responso proporzionato al numero di fotoni ricevato per cm., senza riguardo all'amontare per unita di tempo. Il primo a mettere in dubbio la vaidita di tale legge fu I'astronomo scheiner, il quale osservò che per registrare una stella di grandezza $m+1$, occorre in generaie un tempo di poan triplo di quello occorrente per una stella di grandezzam, nonostante che le intonsita stimno tra loro come $1: 2,5$. Nel I893 Abney verifico con misure sensitometriche i risultati di Schener* Ggli si servi di due sorgenti luminose di intensità molto diverse: una candela una scintilla elettrica, provo ohe l'efficienza del processo fotografico era massima per un determinato livello di illuminamento, mentre I'efficienza stessa decresceva per intensità più alte o pit basse.

Negata cosi per la prima volta la validità della legge di reciprocita, molti studiosi appartenenti a diversi rami della scienza si preocouparono di sostituirla con un'altra rela-
ziont ohe fosse la piu adatta a rappresentare i risultati sperimentali.

Primo tra essi un altro astronomo, schwaresohild, nel 1869 stabili ohe ai ottiene un fiftho fotografico costante mantenendo costanta $i l$ valore del prodotto It con p costante uguale 0,8 ciros. E^{\prime} noto tutbavia che neppure questa relazione, con postante, gi puo ritenere un oriterio valido per detexminare un efotto fotografioo costante su interVall molto ampi di intenstbe. Esse pub venixe applicata con notevole precistone solo quando of si limiti a pose molto Iunghe con intensita molto basse questo era appunto 11 caso di Schwaxaschild, setronomo.

Già nel 1901 Bnglish, ogeguendo misure ohe davano risultati concordi con quellı di Abney trovo che I'esponente y © Variabile.
gheppard Hees (1903-1906) si ocouparono del problema od eseguirono dalle misure servendosi di sorgenti the abbracciavano un intervallo di intensita molto pin esteso di quello di oui si erano serviti i precedenti sperimentatori.

Essi trovarono che qualora ci gi serva di una relazione del trpo $I t^{p}=$ coet per esprimere la mancanza di reciprocità $I^{\prime \prime}$ spenanto p Varia da un valore minore di 1 alle basse intensith a vn valore maggiore di alle alte intensita?

Infine nel 1913 Eron pabblioo 1 risultati di una sua riceroa sulla Legge di reciprocitá egli penso di rappresentare gli -ftottl delle Invalidita di tale legge costruendo delle curve a donsith oostanto ossia riportando in funztone del 10 g I il Logaritmo dell'ogpoghzione $=1 t$ xiogiesta par daxe un determinato velore delle densita. mxovo cosi one per ogni tipo di emulsionefsiste un certo valore dolutintensita al quale corrisponde un valore minimo dell'esposizione necesseria per otbenere una detexninata dencita o che per le curve sperimontall che presenteno tale punto di minimo si puo ascumere oome aquatione quella dell'iperbole

$$
\log I t=\cos t+a \sqrt{\left(\log I / I_{0}\right)^{2}+1}
$$

Cove le cootanti a I_{0} sono proprie dell'emulsione: I_{0} è L'intonsita optimum, de a invect dipende la forma della cur-

Va quindi la maggiore o minore abiazione dalla retta di Bunsen Roscoe. ALI'Gquazione dell'iperbole venne poi prefexita la seguente: (curva di Kron)

$$
\log I t=\cos t+\log \left[\left(I / I_{0}\right)^{a}+\left(I / I_{0}\right)^{-a}\right]
$$

perchè tale equazione, al vantagio di adetire maglio ai risultati sperimentali, unisce quello di ridurgi slle bescism sime intensità, all'equazione:

$$
\log I t=\cos t-\log I
$$

onsipuo anche scxivere:

$$
2 t^{-1+2}=\operatorname{cost}
$$

esce viene quind a coincidere con 1'equazione di gchwarzechild $\operatorname{con} p=-\frac{1}{1+2}$. Analogamenta per 1 molto grande si ottiene Ia medeaima squazione con $y=-\frac{1}{1-2}$.

Da1 1918 a 1921 Halmick agegut studi sulla non reciprocita usando luce monocromatioa di differenti Iunghezze dionda - trovo egli pure per tutte le emulsioni sperimentate un intensiti optimum.

Dopo di lui Jones collaboratori dal 1923 al 1927. Arens - Eggert nel 1927 xiconfermarono i ridultati precedentemente

Fies. 1 - Grafici delle varie leggi di non rectprocite (B iperboln, B ourva di Rron, C, O' rette di sohwarschild, D, D' rette di Bunsen e Roscoo)
obtenuti yar quel che riguaxta 1 "esistono di un "optimum" dell'interaitho I primi trovarono one le regione delle curVe ohe oomprende 11 punto di minimo pitu appiattita di quanto non comporti la curva di Krong che quindi tale minimo wisulta mal abtamineto, mentre per un intervallo piuttosto setosp 8 poasibile confondere la curva con La xetta ohe rappresenta ln legge di reciprocitè e graduere le esposizioni sia facendo variare i tapl che gli illuninamenti. I secondi
introducevano un nuovo metodo per rappresentare gli effetti della non reciprootta. Esel xiportavano per $D=00 \cos ^{2} 11 \log I$ in funzlone 41 log t. ottenendo cosi al variare di D una famiglia di curve la oui pendenaa in ogni punto non e altro che il coefficiente p di schwexzschild misura quindi gil scostamenti dalla legge ai reciproothe Me segue one La Iore mula di schwarzschild si puo considerare una farmula approssimata valida per piocoli intervalli nei quali pe la pendenm za media dolla tongente alla cuxva di Krone

Dol resto la stesse ourve di Kron e da consideraxsi gemplicemente come una buona approssimaziones tnietti nella zona degli 111 uminamenti aebolisami le ourve speximentali si soom stano de gasa piegando brusceneato vargo 1'm to, in moco asim metrico rispetto al punto al minimo.

Da quento si è detto finora risulta evidente che in astronomis, dove sono necessarie pose molto lunghe per la debole intensità delle sorgenti, I'effetto di non reciprocita assume un'importanza rilevante. (Ricordamo infatti che in Itaw Lis Ie sengibilits del prodotti Iotogrefici in commercio som no dete in gradi DTH, e 11 tempo di poss con oui si determine la repidita di un'mulsione in questa meros seneitometrica e $1 / 20$ di secondo.)

He segue che per mottersi nelle condiztoni pit favorevoli d'esperienza, sere opportuno scegliexe quel materiale totografico che ha una buone fficienze nella zona delle bsses intencitè. Bisognerè inoltee ceroere di vitare tutti gli errori che possono derivare dalla mancanze di reciprocitei ad eampio nelle misure di fotometria stellare opportuno che 1e pose di taratura dell'mulsione siano dello stasso ordine
di durata di quelle eseguite sugli astri da studiares ge al contrerio Le pose di taratura Iossaro piut Lunghe, esse corri. sponderebbero, a parita ai esposizione, a illuminamenti pit debolt e outidi a un ratto plt ripido della ourva di Eron: conseguentemente unis certa dipfarenza di densità sarebbe doWuta o un intafoplo a inluminamento,minore per le pose di
 grandezza misfrate risultarebboro affette dien anrore siste-

 th dunque 1 ne notssith di stvaisx tondo 11 comportamento

 ricani per mumecosi thpi ai gavaloni Rodak. Il mataxiale itaLiano invece non es adora stato studiato da questo punto di

1) - Dipencenze aclia non reotyrooite de altri parametri.

Wessun legame e stato trovato finora tra l'entita delI'effetto di non reciprocità pxegentato da un 'emulsione 10 proprieta caratteristiche dell'emulsions stansa, cone ls grana, la rapiaitè, La sensibilita cromatica, coc. si e potum to soltanto osservare ohe le curve di roalprocite veriano no-
 muan dell'Intengtte oscl11e intomo a quel valore pex il qua1e si ha una dantte medig con uns poge compresa tra 0,1 10 gecondi. Le ourve si mantengono in genere gimnetriohe zispotto al loro punto di minimo la loro forma non muta gensibilmente al vaxiaxa dul wompo ai svilupoo.

Esiabe tattaria un atro parametro, la temparatura alla quate avriens I'esposizions. la oui variazione inpluisce nom tevolmexta gul tenomeno del quale al stiamo ocupando, ed è queato fatto che ha permesso di contruire una teores deli'effetto di non reciprocita. E^{\prime} stato infatti osservato ohe 1

Hg. 2 - Variazione della non rectprocita con 1 相 bumparatura.
 spondente alle alte intensite si spogte verso l'alto, ren-
 de dapprima ad appiattixsi per pol spostarsi anch'esso verno 1'alto. Questo signtios che parita di ilimunamonti al aminuixe della tompexatura L'etiscienza delia emulsione do minuisce per esposizioni con alta intencità invece per bsase intensita, I'excioienza aunenta fino a un certo veloxe della thmperature el di sotto di questo toma a diminuire Infine. quando la temparatura si abbassa al di sotto di un certo
 19. curve pestum un andemento rettilineo. (tig. 2)

Quaste osservazioni lamo supporre che la non rectiprocità oongti di due fonomeni tra loto indipendenti dei quali uno ai verifica nella zona del forli illuminament, l'atro in quello degli 1110 m natimenti deboli.

D'altra perte Berg, Haxriage gtevens, hemo etudiato la non reciprocitè presenteta da metexisil sviluppeti in mom do da metber in videnza isimagina latonto formatasi a diverse protondita. Lat ouva di non rectproothe di un provino tratteto con un brgno ohe swiluppa 8010 ha perte superviotaIo dell mavasone, he anderamo analogo a quallo del reno danle alte intonsith delia ourva di provino syluppato con un oomane svilupgo in ocmaereto. Tnvecs, trettando un'smulsione con un solvonte ons he elimini sa parts supericia1e, swiluppado quindi in profondtis, si ottione une ourva

Fig. 3 - Curve di not xeciprocits 06x sviluppi intexi (), guperitoindi (y) - In conmeco10 () .
se ne pub dedurx allora ohe nella formazione dell'Immagine latente, all alta intensite vengano preferiti i nucloi superficiall, all basse prevalga la formazione ai nuclei d'argento interni. Tuttavia pex dare uha spiegazione completa di questi fenomeni, conviene premettere un'esposizione delle più recenti torie sulle formazione dellimmagine latente.
2) - Teoria della formazione dell'immagine latente secondo Gurney a Mott.

E' noto che fra tutti i granuli di AgBx contenuti nella gelatina che viene esposta alla luoe, divengono sviluppabili
solo quelli nei quali si viene a formare una quantita suffie ciente di Ag metalico, estraneo al reticolo cristallino. La difficoltà maggiore sta nello spiegare come si formano queste tracce: la reazione quantistica

$$
\mathrm{AgBr}+\mathrm{h} \nu \rightarrow \mathrm{Ag}^{+}+\mathrm{Br}^{-} \rightarrow \mathrm{Ag}^{+}+\mathrm{Br}+\longrightarrow \mathrm{Ag}+\mathrm{Br}
$$

è in realtà troppo semplice per rappresentare tutti i complessi fenoment ohe si verificano nello strato. Una spiegazione di questi fenomeni è stata data dai due fisiai inglesi Gurney - Mott i quali hanno studiato quanto avvien durante l'mposizione lo sviluppo di uno strato sensibile fotografico, alla luce delle moderne conezioni della meocanica quantistica.

Guando un atomo di Ag si unisce a uno di Br per formare una molecola di AgBr, l'olettrone di valenza dell'Ag ohe apo parteneva al livelio 5s, passa al livello $4 P$ del Br. Un fatto analogo si verifica quando pit ntomi di Br si dispongono sui filari del reticolo cristallino: in tal caso i due livelli energetici prima ben definiti, sfumano in due bande di energia che indicheremo rispettivamente con s P. (In real-
tà esiste per ogni direzione nell'interno del cristallo una diferente struttura delle bande, ma per semplicita ci si puo limitare al oaso unidimensionale.) Anche qui tutti gli Qlettroni appartenenti alla banda s si trasferiacono nella banda P: ora un risultato ben noto della teoria quantistica dei existalli che, se dall'esterno si porta un elettrone su un ione di Ag del reticolo, con un'energia corrispondente a quella della banda S, tale elettrone avrà la possibilità di passare da quel tone agli altri vicini, mavendosi attravexso il cxistallo quasi cone un lettrone libero in un metallo: infatti la barriera di potengiale che si oppone a questo moto e praticauente trascurabile.

Supponiaxo oxa che un cristallo di AgBr venga colpito da una radiazione di una certa frequenza ν : ν e abbastanwa grabde, \& fotoni che giungono sul cristallo avranno energia sufficiente per sollevame alcual elettroni dal livello P al livello S , 0 Livello di conduttività ma questi elettroni divengono allora liberi di moversi nell'intemo del cri-
stallo, Hanno origine cosi alla fotoconduttivita.

Conmesso a questo fenomeno è quello della fomanione dell Immagine latente. Secondo i nostri autori, nel retioolo cxistallino dell' AgBx in equilibrio temico alle temperatura T. Vi sono alouni Lont Ag' che Lasciata la posizione che occupaveno su un nodo del roticolo, si spostano attraverso 11 cxistallo e vanno ad occupare posizioni infrareticolari. (Ohe suano gli iont As ${ }^{+}$e non quelli Bx che si spostano nel reticolo dipende dalle magsiox dimensioni di queget ultimi.)

IL posto Lasciato vacante da questi ioni pud venire occupato poi da altwi si ha cioe la possibilita di uno spostam mento nell'interno del oxstallo sia degii loni infrareticom lari, sia delle posizioni da Loro Lasciate vacanti, e quindi d una vera propria conduttivita elettrolitioa.

Prenesso questo, possiamo cosi schematizzare 11 processo di fomazione dell'imagine latente.

Quando la radiazione arriva sull emulsione, come abbiamo visto più sopra esaa fa si che alcuni degli elettroni, ap-
pertenenti agli atomi di alogeno, pasaino nei livelli di conduttivita; questi elettroni vengono captati da alcune tracoc di Ag_s cho secondo sheppard si trovano sulla superfiole ded gamuli: La catture poscibile poiche agli elettroni dell' $\mathrm{Ag}_{2} S$ compete un livello di energia piu basso di quel10 di conduttivtte pit alto di quello degli atom di Bx. - quindi un elettrone ohe glunge nelle vicinenze della traccia cade nella buea di potenmiale senca poteme plu uscire (allo zexo assoluto). Le tracce che zssumogo cosi una canca negativa, osercitano un "attraztone sugli toni di Ag inframolecolari delle cul preseaza nel oxistello aboiamo pariato piv sopra: ogni ione neutralizza oon la sua carica positiva quella di un elettrone mentre si forma un atomo neutro di. Ag ohe contribuisce ad ingrossare $2 a$ traccia. Quando la traccas avra reggiunto dinensioni mutidienti, il granulo a oui esse appartiane sara diventato sviluppebile.

Anche da questa esposizione somazia appaiono subito i pregi principali della tooria essa ad ogni fotone assorbito fa
corrispondere un elettrone nei livelli di conduzione e quindi la formazione di un atomo di Ag nella tracoia: inoltre Sornisce una spiegazione del Iatto che, mentre i fotoni vengono assorbiti a caso bu tutta la superidoie del granulo, Ie tracee di Ag si formano solo in alouni punti localizzeti delLa superficte. Apfinche perb il modello cosi costruito sia valldo, bisogna faxe un ulterione pxecisazione.

Quando La radiazione sposta un elettrone da un atomo di alogeno, 21 posto che rimane vacante che possimo chianare "buoz posstiva" puo avere una certa nobilita, perohe un altro elettrone puob movesg da un Lone viojno e saturario. e cosi via attraverat 11. retioolo. Bibogna allora fare I'ipotesi che questa mobilith sia moLto minore di quella degli ioni d4 As nelle posiziont intraretioolart, poiche in caso contraro la carioa negativa della tracota di Ag verxebbe neutralím zata dalla buche pocitive rendendo tmpossibile La migrazione degll 1 ond Ag^{*}
3) Meoria quentistica e curve teoriche della non reciprocite.

- Passiamo ora ad illustrare alla Luce della teoria descritta 11 fenomeno di non reciprocita. Cominciano con L'osservare che, secondo i calcoll eseguiti da Eggert e Noddak 11 mumero al quanti cho un granulo deve assorbire per diventare sviluppabile. dellordine dy 100 (questo numero vale pex 11 granulo medio di un'emulaione in effetti in un'emulsione nomale circa la mets del gramuli diverrà sviluppabile con questo numero di quanti, mentre in un cmulsione molto sensibile vi sara una piccola percentuale di granuli, I' 1% circa, sensibile anche a uno o due quanti solemente. Infine in ogni emulsione vi sono del gramuli, ohe cotituiscono 11 velo, sviLuppabili anche senza aver micevuto alcuna emposizione.) Se allora supponiamo ohe ad ogni quanto corrisponda un atomo di Ag, La tracoia di Ac capace di rendere sviluppabile 11 granu10. dovrebbe contenere 100 atomi. Tuttavia Le considerazioni seguenti oi pemetteranno di stabilire che i primi elettroni formatisi non servono per dar luogo ad Ag metallico, e che

Pig. 4 -Schema dei livelli enexgetici in un granulo di AgBx.

1a erossezza necessaria per una trecoia \& molto inferiore a 100 atom. Consideriamo una tracoza di Ag metallico privo di caxica in contatto con 1 AgBr. Sta 11 Lavoro necessario per portare un elettrone dal metallo nei livelli di conduzione dell'AgBr (ILg. 4). Not non conosciano a priori E, ma considerazioni seguenti mostrexanno che esso mol to minore del potenziale di ioniztazione W dell'Ag. Guando la temperatura aumenta, vi saxano degli aletroni che passano dal metallo ai Livelli di conduzione del sale. Supponiamo per un momento che L'elettrone sia una paxticella priva di carica: in tal caso $n i$ formerebbe un "vapore" di elettroni la cui
pressione sarebbe proporzionala ad $e^{-E / K T}$; quindi chiamendo con e 11 rapporto del numero di elettroni per unith di woLume mella banda di condizione, e numero delle coppie di Loni, avremo, limitandoci a considerare gli ordind di grandezza, $\quad 0 \sim e^{-2 / X T^{2}}$.

Teniamo conto ore della carica negativa degli elettroni: La carica positiva lasciata sul metallo fare gl ohe 11 gas negativo di elettront si raddenst in un athostere ohe circonda la superficie del metallo con una concentrazione dell'ordine di $e^{-E / E T}$. Ora la condinione perche una traccia di Ag si ingrossi, e oheossa sia carica negativamente, mentre noi abbiano visto che una tracoia inizielmente neutra, cede elettron e diventa carios positivamente. Ividentemente allora, quando un granulo es esposto alla radianione, una traccia di Ag non puo inconinciare ad ingrosaarsi finche la concentrazione o degli elettroni non raggiunge 11 valore critico $c_{0}=e^{-E / K T}$. Assumendo che 100 quanti vengano assorbiti da un granulo di 10^{10} coppie di ioni affinche una traccia di Ag incominci ad
ingrossaxsi, con questi valori otteniamo:

$$
\varrho_{0}=10^{-8} \quad, \quad E=K 270^{\circ} 8 \log _{e} 10 \simeq 0.4 \text { e. W. }
$$

Questo valore di E è molto minore del potenziale di ionizzazione W: a suggerisce che 11 Livello piu basso della banda
di. conduriona abvia l'energia negativa.

Concludendo no abbiamo wisto ohe 12 gas at eletroni deve raggiungere la concentrazlone minima of prima che 1 "imasine letente possa incominoiare a formerst. Wa mentre questa concentraziono si sta fommando, gli olettroni possono ricombinarg col Loro atoma al alogeno owigimali eventualmente puo venire raggiunto uno stato di cguilibrio nel quaie git elettroni si micombinano cosi raptadente come si fomano.

Se in questo stoto La concentreqione a minore della concentrazione oxitica 0_{0}, IMmagine latente non pub fomarsi. (1)
(1) Ricordiamo che anl'astronomo indiano Saha si deve 1'idea di considerare la reazione atomo \ddagger Lone + alettrone, come una nomale reasione ohimica per quel che xiguarda le concentrezhome la legge dell'azione di masea. e che questa teoria ha portato a notevoli risultati in astrofisica, cove essa è di grande utilite per calcolare la terneratura delle stelle, dequeendola dallo studio delle righe apettrall. Anche nel nostro caso, nel miscuglio di atomi, di loni o al elettroni, si può giungere a una condizione d'equilibrio nella quale deve esmexe rispettata la legge dell'azione di massa.

I' proprio in questo fenomeno oke possiano trevere le ram gioni teoxtohe della non reprocita. Veaiamo infatt come ai posca espximere analitiomente 11 concetto prima esposto. Consideriamo un singolo elettrone in un gxanulo di AgBr ohe contenca ed esempio 10^{12} copple di tont. Se esso è su nno
 questo dopo wn tempo dent ortine as 10^{-8} mee. D'altra parte. durante 11 suo moto attraverso 11 aristallo, esso trascorrexa in medta solo una frazione 6×10^{-12} aclia gue vita in quem sti get iont. Se allora A è la probebilita per secondo che 1"eletbrone e z'stomo ai alogeno si moomotnino, sara $A=6 \times 10^{-4} \mathrm{sec}^{-1}$. Constactiamo ora un gramulo che assorba Iq quanti per secondo: allora dopo un tempo t. il mumexo N di eletbront a atom noutri di elogeno, es:

$$
\begin{equation*}
-\frac{d V}{d t}=I_{q}-A V^{2} \tag{1}
\end{equation*}
$$

potche 11 muncro delle xtcombinaztont of proporaionete al numexo di aletromi ed postr vacanta. Le soluzione dell'equarione (1) e:

$$
\begin{equation*}
N=\sqrt{\frac{I_{q}}{A}} \operatorname{tangh}\left(\sqrt{I_{q} A} t\right) \tag{2}
\end{equation*}
$$

quando t tende allimpinito. 算 tende a $\sqrt{I_{q} / A}$. Cosi. per quanto lunga sia l'egposizione, noi non possiamo ottenere pit di un certo numero di elettroni.

Ad esempio, in un'esposizione ordinaria in cui un granu10 escomba 100 quanth al seo, col valore sopra trovato per A. st potx ragelungexe un numero massimo di eletroni at 410^{2}. Per le deboli intensite 11 mascimo sere molto piu piccolo. Dopo 1"eaposizione. 11 mumero n ai elettroni dininuirè sem condo Ia lege ottenuta dalla (1) per $I_{q}=0$:

$$
n=\frac{1}{A+1 / n_{0}}
$$

$\operatorname{con} n_{0}$ mumexo iniziale di elettroni. In fig. 5 sono riporta41 valowi di n durante e dopo due esposimiont di ugual It. na di duverso 3.

In ogn emulstone la quantibt di radiazione ascorbita varia da grano a grano dipendendo dalla grosserza e da altri fattori. Wa poioht per ogni granulo deve essere raggiunta una certa concentrazione, prima che ai posse formare l'immagine

Dig. 5 - Wumexo di elettroni Ghe sin sommeno al secondo in un gremulo di AgBx.
latente, si puo conoludere che per ogni intencith di illuminamento solo una certa pereantusle di gramuli pub serpoo divenixe sviluopebile, commque Inrga sia lesposizione. Questo e In sccordo oon gli esperiment di Toy ohe esamino al miorogcopio 1 greni d un emul stone, dopo 10 sviluppo.

Le etesse conolusione si pub esprimere anche dicendo ohe per ottonere una dsta denesth, con un dato sviluppo, 1'11uimenento I deve superare un valoxe dato.

Nella fig. 6 possiamo osservare due ourve teotiche che riportano \log It tn funcione di \log I per due diverse temperature; tutti 1 rasultati fin qui ottenuti hamo valore teaxi-

Pig. 6-Curve teariche ai non reciprocitt.
co, perche Le nontre concluaioni dipendono dall"potesi che gli atom neutril di alogeno non sfuggano dal granulo nella gelatina, prima che abbia avuto luogo Ia ricombinazione con 1*elettrone.
4) - Effetti di alta e bassa intensite E apendenae dalla temperatura.

Vediamo ora come si possano spiegare con 2 'aiuto del modello descritto, $1 e$ curve gperimenteli di non reciprocita - 11 Ioro comportanento al variare della temperatura. L'efetto di non reciprocita alle alte intensita si deve attribuire alla lenteza con oui si spostano gli ioni Ag nel processo secondario dell'ingrossemento delle tracce, in
confronto alla xapldita oon oui si formano gli elettroni del processo primario per 1 "intenso bombardamento di fotom ni dovato alla alta intensity della radiazione. Ne segue che si ha ura sovrabbondanza di elettront intorno alla tracoia, 1 quali con la loro caxioa negativa che non puo venire subi-m to saturata dagli ioni $A g^{\dagger}$, jmpedsषono 1 'aflusso di nuovi elettroni. Questi uttimi si puo pencare o che si micombinino con git atomi di bromo, oppure secondo le espexienze di Berg. Maxmiage stevens, che asano luogo a tracoe di Ag nellinterno del granulo, le quali manttano inservibili per lo svilup po. Questruitima ipotesi conoorde con quanto si e visto precedentemente sul prevalere della formazione dei nucles interni su quelli supericiali alle alte intengita.

Alla stessa causa pub essere attribuito 10 slittamento verso I'alto del samo delle alte intenaita delle curve di now rectprocitb, quando diminuisce la temperatura. E' evidente che 11 movimento degli joni di Ag nel retioo10 viene favorito dalle temperature elevate, mentre la mobi-
lita decresce al himinuire della temperatura, poichè diminuisce l'energia e quindi anche la velocita delle particelle. Quando poi la terperatura es sufficientemente bassa, non si ha pil alcuna influenza dell'flluminamento sulla formazione dell'immagine latente: infatti in tali condizioni la mobilità degli ioni è cosi ridotta da potersi ritenere che durante I'egposizione abbia luogo nolmente il processo primario di formazione degli elettroni, e che il processo secondario di ingrossamento della traccia avvenga durante le operazioni di sviluppo, quendo I'emulsione passa alla temperatura ambiente. Evidentemente non ha allora importanza l'intensita della radiazione alla quale si espone, quindi la rapidita con cui si formano gli elettroni che caricano negativamente le tracce, poiche tele fenomeno non puo essere seguito immedatamente da quello della mingrazlone degli ioni.

Invece per quel che riguaxda le basse intensite si suppone che la non reprocita sia dovuta a una regressione causata dall'agitazione temica, nella fomazione della traccia di

Ag: ohe cioe alcuni elettroni si separino per azione della propria energia termica Cagli ioni di Ag coi quali ai erano precedentemente fusi, e vengano proiettati nell'interno del granulo seguiti da un ione Ag^{+}, causando cosil la perdita per 2e traccia di un atomo di As. (Notiamo che se la regressione per decomposizione termica della formazione di una traccia, serve a spiegare come I'effetto oada al diminuire della temm peratura, tuttavia la stessa regressione potrebbe avvenire anche per cause diverse dall'agitazione termica: ad esemplo il Patto ohe la non reciprocita di memalsione vaxi al variare del processo seauto nella fabbricautone, fa ritenere ohe si possa avere una regressione dell'immagine, di origine chimica.)

Per spiegare come tutto questo arvenga solo quando 1'emulstone riceve esposizioni di debole intensita, blsogne fare I'fotest che il processo di recresstone nella fomazione della trecoia si verifich di preferenaa agli inizt della
formazione stessa, quando la traccia è costituita da un nume-
ro esiguo di atomi. Tale ipotesi è convalidata da esperienve eseguite da Webb ed Evans.

In una di quaste esperiense, un'emulsione ha micevuto due serte ai esposizioni, ciascuna delle quali comispondente alLa stessa energia totale, ma sudaivisa in due rate, una con slusso a basca intensita (B.I.), 1"altra con flusso ad alta Intensita (A.I.) . In ambedue le serie si fecevano variare da una posa all'altra le proporaloni tra i templ di durata delle esposiatoni A.I. B. T. ma mentre in une serie le A.I. precedevano le B. I. nell altra succedeva 11 contraxio. Ripoxtando in un digeramm (fig.7) Le densità ottemute in funzione delle percentuall di esposizione D.I. tuspetto all'esposisione totele A.I.t B.I. si ottengono per le due setie due ourve diverse di cut coinctiono solo punti estremi (e quindi gli effetti complessivi di non reciprocite). La curva corrispondente alla prima serie (A.I. ohe precede B.I.) el mantiene costantemente superiore alla seconds, e mostra che quando I'esposizione A.I. è data per prima ed am-

PLg. 7 - Dlagrama dell vespemienaa di Webb ed Evans.
monte almeno ad $1 / 4$ dell esposintone totale. la paxte B.I. ha effetto come se comispondesse anch'essa a un fiusso delI'ordine di grandezza di A. I. La seconda curva invece. (B.I. ane precede A.I.) sta ad indicare che in questo caso B.I. perde notevolmente di efticienza nei confronti di A.I.

Questi msultati confermano guanto si era supposto, dimostrando che 11 senomeno di disintegramione della tracela non avviene, se un'esposizione di debole intenclita se ne fa prem
cedere un'oltra di intensità molto piu alta: ohe generi una braccia di Ag di dimensioni notevoli e quindi sufficientemente stabile: la posa debole non in in questo caso che integraxe I'imagine latente fomata precedentemente.

Naturalmente il fenomento di regressione della tracoia, che trae la sua oxigine dalla agitazione temica delle particelle, tende ad amullarsi col diminuire della temperatura. Per questo Webb ed Evans consigliano di operare a temperature molto basse quando si eseguono pose con sorgenti molto poco intense, ad escmpio nella fotografia delle stelle piu deboli. Continuando a diminuire la temporatura ai arriverà a un certo punto in cui I'effetto di disintegraziono si anmulla completamente: al di sotto di tale livello poi, entrerè di movo in gioco la dimimita mobilità deqli ioni equindi La curva mprenderà a spostarsi verso l'alto, come abbiamo visto precedentemente che acoude.

5 - Dipendenra dalla lunchezza d'onda.
Resta ora, per completare il quadro teorico della non reciprocita, da studiame la dipendenza dalle compoaizione spettrale della radiazione. Le curve di non reciprocità: log It in funtione di log t, corrispondenti a λ diverse, risultam no parallele a apostate verticalmente I'una rispetto all'al tra, il che significa che la variazione spettrale della non reciprooita e indipenaento dal tempo.

Infatti, Mohianandoct ancora una volta alla teoria di Qumey e Mott, possiamo osacrvare ohe al variara di λ varia I'andamento con cut ai Soxmano gli elettroni fotoconduttori, poichè varia I'energia dol fotoni inoldenti; ma La variaztom ne è la stessa qualunque sia 11 tempo di posa, perchè una Volta che gli elettroni gono nella banda di conduzlone, sl comportano tutti nollo gtesso modo, qualunque sia la luagheqza d'onda della radiaztone ohe lit ha prodottin. I" naturale quand ohe il rapporto delle esposizioni esegute con due λ diverse, necessarie per ottenere una medesima densitar D_{2} si

Hig. 8 - Curve di non regiprocite per radiazioni di diversa lungh. dionda.
conservi invariata per i divexsi tempi di pooa. purche i tempi cormspondenti alle due esposizioni siano gli stessi.

Possiamo esprimere aneliticamente quanto precede, notando che la fomma delle curve di cui gi paxlato dipende dalla densitue dal terpo 0 posa, mentre la loro altezze dipende dalla λ oltre che dal tempo. e quindi:

$$
\log x t=\mathbb{F}_{1}(D, t)+\mathbb{T}_{2}(D, \lambda)
$$

- anche, pascando dai Logaxitrai ai mumeri

$$
S(D, \lambda) I t=X(D, *)
$$

In quest'uitima equazione $5(D, \lambda)$ non è altro che il reciproco dell'energia necesseria per produrre una certa densità D. al variare di λ, tale quantita misulta indipendente dal tempo. oivide

$$
=\mathrm{DL}=\mathrm{NON}=====
$$

per eseguire 10 studio spprimentale della non reciprocith di un'emulsione si pud procedere nol modo seguente.

Si dà un'emulstone wne serie di esposizioni sempo di posa costante e illuminamerto varibbile. In coxxisponden2a degli 11 uminamenti $I_{1} I_{2} \ldots I_{n}$ si otherramo 10 aensits $D_{1}, D_{2} \cdots D_{\text {n }}$ ohe x^{t} possono misurare an aenaitometro. Ryportando $10 \mathrm{D}_{1}$ in fumatone degli I_{1}, gi
 tempo

La steasa opergrione si compto cambiando 11 tempo di poge contemporaneamonte gli illuaimamenti in modo de obtenexo per dei valori $I_{1}^{*} I_{2}^{*} \ldots I_{1}^{\prime}$, un altra serie Di di dexsita migurabili col denaltometro e dello stesso oxdine di grondeara delle D. Paranotro della nuova curva caratteristiaa e In pose ${ }^{*}$.

Ripetendo questo procedimento per una gamat 11 pilu poseibile estesa di valori di ty si avxà La possibilita di costruise per un certo valore della densith una curve one riporti 11 Valore del logaritmo dell'esposizione che d stata necesm saris per ottenere quella determineta densita in funzione del logaritmo dell'illuninamento usato allo stesso scopo. Im altre parole, costruitn In tabella

gi miporthno in funzang dei logentrat des bemini di un colonma i logaritmi del prodotri aet termini stessi, ciascum no pex 11 corrispondente valoxe di b. Complesaivamente da tutte le colonne. at ottene cosi wat iamizlia di curve $D=\operatorname{oog}($ ing. 9)

Hes. 9 - Curve di now reciprocith per $D=0,5,1,0: 2,5: 2,0$.

Sarebbe preferdbile unwe Luce monocrontion operare pex le drexge lunghezze d'ondan man per fare questo occormexebbe sexvixet o di uno spottroscogio o di schermi colom wht, 41 che limiterebbe molto le possibilita di spingersi vorso 11 untument sssat intenst. per guesto of preferisce ds soltto ustare sorgenti potiexomatiche.

Ogservando 11 gratioo plporthto notimo aloune partico-
 na rethe log $I=$ cost $\% 1$ puntr in ont eson incontra le our-

1'emulsione in istudio, costruita per tempi crescenti. If contrasto γ^{\prime} di thie curya si puo zicavare diretbamente dal grafico, facendo 11 rapporto tra 1 a differenza di densite $\triangle D$ di due ourve e Ia differenza $\Delta \log$ e dei logaritmi dell'esposizione corrispondente i puxti in cui esse sono imoontrate dalla retta $\log I=00 s t$. Maturalmente il contrasto cosi ottenuto sarà quello rassimo se le densita soelte appartengono al tratto rettilineo della curva caratteristion mentre in caso oontrario esso rappresenterà il gradiente medio mell"interyallo considerato.
 2. 450 sulle ascisse, come maultan daliequazlone

$$
\log E=\log I+\log
$$

per $x^{\prime}=\operatorname{cost}$. I punti in cui queste rette incontrano La famiglia di ourve a aensita costante, sono i punt di una
 trasto γ ai othiena malogmente quanto si evisto prima. Notiamo subrto che mentre il contrasto γ^{\prime} terapo variabile e illuminamento costmate si coaserva invariato qua-

Lunque sis I, poiche le curve del grafico sono senaibilmente parallele, 11 contrate $\gamma=-\frac{\Delta D}{\Delta \frac{1}{2}} \mathrm{E}$ port $=000 t$ Lnvece, oxesce al orescere di I, poivhe anenta la lunghez zand tratho $\log \mathrm{E}$ intercetteto dalle rette $=$ oost sulle
 opportuno nelle misure ai fotometria gtellaxe scegliere le stelle campone dello ateseo oxalne di quadezza delle stel10 da misurare, come aboiamo gia mccemnto precedentemente.

Cap. V - DISPOSITIVO SPERTMGNTHE*

IL materigle atudiato ${ }^{2}$ costituito da Lastre "Ferrania. des seguenti tipi:

Lestre Ortocrometiche

- Orto gpectali 11/10 DIN - etich. gialla
- Oxto miti -alo extravaptae 14/10 DLN -- etich. arancio
- oxto witrasensibili 15/10 DLI -
- Orvo studio 13/10 DLN
- Mue owto antw-w $10 / 10$ DIM

Lugtre pegcromgtiche

- Hive pancxo anti-sio $18 / 10$ DTH
- Pancro studio 20/10 DIN
- Pencro superex $21 / 10$ DIH
- Enoro superrap 4 de 23/10 DTM

01 siamo inmitati tre whori del tempo di posa scelti 11 primo dell'ordine ai grandezza delle pose astronomiche. 11 secondo delle pose di tipo spettroscopico, e il terzo delle istantanee: precisamente abbiamo deto alle nostre lam

Pig. 10 - Schem: del disponitivo sperimentale.
stre tre gexie di esposizhoni por

$$
t=t^{h} \quad t=2 \sec \quad t \quad t=1 / 100 \text { sea }
$$

Cone sozganti of simo sexviti di una lampede Moaran"

 Lmento di tungstromo. pex le pose medie 26 pit brevi.
 i bre suddenth yari at b at gono ottomte col seguento di-

 sthata ventre controllitu woulunte 2'mperometro s, exa
 Va La Lastra In e apposgiato allo gtrato semsibile un cuneo

K progressivamente anerito. Le pose venivano regolute mediante un otturatore tendia 0. I valori della corrente 1 nel oiroutto di coenstone erano di 0.15 per In gorgente pis debole e di 3.80 A e 4.30 A per lay gorgente pit forte, riepettivamente per le pose oom $=2$ sec. $\theta=1 / 100$ sec.
 po di correggere In curva di enisclone delle sorgenti, molto 1ntenge alle grandi lunghezze d"onda couse della basse temperatura del filamento mavyiohuandola quella della radiaziome solare:(cosi La sorgente diventava simile alillumio nante B), contemporanemente di $11 m$ there il vantaggio in cui per questo motivo si sarebbero frovate le lastre di tipo pancromitico in confronto nle owtooromatiche.

Il cuneo K, della lunghezza di om. 15 , e stato suddiviso in gradini di 0,3 om ciasouno, separati l'uno dall'altro da 0.3 cm ai intervallof La taratura del cuneo, eseguita al microfotometro di Hartman, ha permesso di stabilire che la costante del ouneo stesso, ossia L'ineremento di dmasità
per cm, è di 0,226. Ne viene che le linee medive di due gredini consecutivi, che distano di 0.6 cm , differiscono di 0,135 in densità. (La differenza di densith di due punti del cunco, coincide con in differenza del logeritmo del1'illuminameato prodotbo sulla lastra nei due puation oorme spondenti. e quindi wile ascise di ume ourvaratteristioa per illuminamenti aresceati. Infatti in due purti $P_{1} e$
 11 alle traxparenze T_{1} e m_{2} del cunco: i log I coincidono a reno di una costante arditiva oon i logaritmi delle trasparenge, e quindi noho coj logaxitmi delle derastit, bol ge gno cambisto.)
per ogni gruppo di esposizioni con un detexmineto t, si

 al metol-idrooninone, nuovo, per $4^{\text {mi }}$, 180 o di temperatura.

Le lastre appartenenti allo stesso grappo (separatanemte oxtocromatiche paxcrommtione) che wevano picevuto la stesan esposizione, venivano gviluppate contemporanemente, in modo an mantenere il pit poasibile oostante le condiatoni di gviluppo, e remdere quitud accothabile un confrombo. DL tutbe le Lastre inpzensiomate, mono stabe lebte le densita micrototonatro di Haxtmany, e costruite 10 curve csrotberistione delle diverae ourve ottenute per il medesimo lipo ai Lantra e con La stestanpoas. purohe mventi 10 stesso contrasto, (11 che asstouxave che le condiztoni di sviluppo
 medial di tall cuzve in aexinitva ge ne hano nove, quante sono le lastre stuaide, per oguuno dei tre tempt di posa. Le minure del flusso erogato dalle gorgenti, sono state esoguite con vin totocellule al $\mathrm{Cu}_{2} \mathrm{O}$ yoiche non ara nota L curva di tarmarg i(φ) della fotocellula relativa n givamonetro ntulisgato per le misure stesse, (e quindi non si gapeva entro quale intervallo le tariazioni ai i con φ Loasero Lineart), esso a atato adoperato come strumento
di mero). Bex macerare 11 quavanometro, wiviare di φ
 geate. I valomi ottenuti, iavergamonte proporgional a quearati delle ds gtome af permettono naturglmente solo un
 gentre mon sono micure agsolute di fluaso.

Dalle curve coratterbstiohe delle divexae emulsioni, e servendogi delle misure relstve di illuminamerto, gi somo rioavate 2 e curve al wox reciproolda, o megilo quel wan at

 mea della curva oarstrexistica la dove le proprieta misolvimetriohe delle emulaiont, cone a atrontrato sperineztajnem

 Co intaresga di wetvere in evideng righe apetrali deboli.
 roxi moximenbui relativi ala misure di flusso e alle durg-
te del bempl di posa, sopretutto medi bevi, 1 wicultati ohe si possono ricavare dalle curve al now reciprocita hexno valore puramente qualitativo.

Tyfitti per quel che miguarda le pose, quelle di $1 / 100$
di gecondo sono affette da un eventuale errore strumentale sistematico one dipende dalla teratura dell otturatore: le pose di 2 sec sono invece soggette un errore acoidentaly In quatto che esse venivano fifetuate com l'ainto di un $^{\prime}$ metronomo contasecondi infine per le pose ai un ore ment *se I'exrore relativo nella misura del tempo e molto picco10. ©i ha una meggiore incertezag sulla costanza dell, sorgente, 11 cui controllo gull' amparometro si poteva eseguire solo con qualohe difficoltà durahte le posa cana della debolissima intencita della yorgente stease e della impose gibilita di servirsi di altre goxgenti piu intexse, ohe ayVrebbero disturbato l'esposiziome della lastra. Tuttavia si può whtenere ohe onse della considerevole durata della posa, Le oscillazioni nell'intensita della sorgente, si siano compenate statisticanente.

Per quel one rigurde le misure di flugso possiamo note-
 tro, precisamate per avere um mumero di divisioni pexi 2. un decimo del fondo scela e stato mecescmrion per Ia sorgente ${ }^{\text {bit }}$ debole pore Le fobocallula poohi on di distanza dalla gorgente stesse. In queste condizioni l'errore reLatvo gulla minuxa delle distsma tra fotocellula gorgente molto forte. Per ovviare questo inconvaniemte, che priva di ogai significoto quantitativo le wostre nisure, in
 di compiere 1 misure 1 fotometro di Weber egistente presso L'Int. Maz. dotbloa in sroetri. questo strumento si bege sul comfronto visuale delle due zone di un ompo illumiwate da due sorgenti di cui una quella della quale si
 ris. Le misure gi eseguono veriawdo la brillanze prodotto gul compo da quest'ultime somgente mediante 10 spostamento di un Vetro opale in posizione opportuna fino ad ottenere I'uguaglianza di illuminamento sulle due zome del campo.

Ha mohe qui. quado si è trattato di misurere 1 a gorgente
 ad Lllundraxe il campo, in modo tale da permettere who som 10 nea misura approssimatian

```
OLASTRE =- ORTOORONATIOHS}=
```

t $1 / 100$ sec: $1=4.30 \mathrm{~A}$

1ampada Oaram" $6 \mathrm{~V}-4.35 \mathrm{~A}+$ +121tro BG4

Oxtogia11a 11/10 DTN d 20 cm

LogIt	D	Log It	D
velo	0.12	$v e 10$	0.08
1.27	.17	1.00	.11
.41	.21	.14	.13
.54	.28	.27	.16
.68	.44	.41	.26
.82	.67	.54	.42
.95	.96	.68	.63
2.08	.28	.87	.85
.22	.87	2.08	1.10
.36		.22	.28
		.36	.49

Ortoolu $15 / 10 \mathrm{DIN}$
Ine orto 18/10 DIM $d=20 \mathrm{~cm}$

log It

Ortoarancio 14/10 DIN $a=20 \mathrm{~cm}$
log It

$$
0.08
$$

.11
.13
.16
.26
.42
.63
.85
1.10
.28
.49
.67

$$
\log I t
$$

D
velo

$$
0.18
$$

$$
0.84
$$

$$
.19
$$

.98
1.11
.25
.38
552
.67
.80
.93
2.07

Oxtostuato $18 / 10$ DIN $\mathrm{d}=28 \mathrm{a}=\mathrm{m}$

logIt	D
we10	0.05
0.30	.07
.43	.07
.57	.08
.71	.10
.84	.17
.98	.26
1.11	.45
.25	.66
.38	.92
.52	.45
.67	.66
.80	

$$
\begin{aligned}
& t=2 \text { sec } \\
& 1=3.30
\end{aligned}
$$

Lampada "Osram" $6 \mathrm{~V}-4.35 \mathrm{~A}+$ 4 Piltio BG 4

oxtogial1a 1//10 DIN $d=1$ 路

ortoarancio 14/10 DIN

($\div 1 \mathrm{~m}$

10ヶ It D
velo 0.09
.13
.17
.28
-4 46
.73
1.04
.30
.51
.74
.99

Oxtoblu 15/10 DIN
$\mathrm{d}=1 \mathrm{~m}$
Bine oxto $\frac{\text { ox }}{d=1.41 \mathrm{~m}}$
$\log 1 t$
D
D
$\log 1 t$

velo

1.15
.29
.43
.56
.70
.83
.95
.09
.23
.36
.50
.64

Qrtogtudio 18/10 DIN
$d=1.41 \mathrm{~m}$

$10 g I t$	D
velo	0.18
0.86	.21
.99	.25
1.13	.32
.26	.67
.41	.93
.54	1.19
.66	.41
.81	.60
.93	.84
2.08	.94
.21	

$-60-$

$$
\begin{aligned}
& t=h^{h} \% \\
& i=0.15 \mathrm{~h}
\end{aligned}
$$

Ismpada MOnroum 6 V - 0.254 4 + filtro Ba
$\frac{\text { Ortogia11a }}{d=10 \mathrm{DH}}$ $d=1$ m
$\frac{\text { uttoaxanuto }}{d=1 \mathrm{~m}}: 10 \mathrm{LIN}$

$$
\log I t
$$

velo

$$
1.71
$$

$$
.84
$$

$$
.98
$$

$$
2.11
$$

$$
.25
$$

$$
.38
$$

$$
.53
$$

$$
.66
$$

$$
.88
$$

$$
.93
$$

D
0.09
.11
.12
.13
.22
.31
.51
.75
1.08
.41
.70

$$
\frac{\text { OrtobLu }}{0}=0.70 \mathrm{~min}
$$

$$
\frac{\text { Line orto }}{0}=1.18 / 10 \mathrm{DIN}
$$

$$
100 \mathrm{It}
$$

D
velo

$$
1.70
$$

$$
.83
$$

$$
.97
$$

$$
2.11
$$

$$
.25
$$

$$
.38
$$

$$
.51
$$

$$
.55
$$

$$
.78
$$

$$
.92
$$

0.07
.09
.11
.14
.21
.32
.51
.64
.98
$1 \cdot 35$
.70

$$
\frac{\text { ortoatuaio } 18 / 10 \mathrm{DIM}}{\mathrm{~d}=1.50 \mathrm{~m}}
$$

LogIt	D
velo	0.10
1.39	.11
.53	.13
.65	.14
.79	.18
.93	.29
2.07	.63
.20	.89
.33	1.16
.47	.44
.60	.75

$4 \begin{array}{l}4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4\end{array}$

$$
\begin{aligned}
& t=1 / 100 \mathrm{gec} \\
& 1=4.30
\end{aligned}
$$

Lampada Moram 6 V-4.35 A

+ ILItro BG 4

Ine Dancro 18/10 DIN
Pencro $\frac{\text { gtadis } 20 / 40 \text { DIN }}{d=40 \mathrm{~cm}}$

$$
\log I t
$$

108.16	0		0.10
4.10	0.12	.10	.13
0.35	.14	.15	.54
.98	.16	.68	.16
1.12	.21	.81	.39
.26	.29	.94	.43
.39	.65	.21	.89
.52	1.00	.35	.80
.66	.32	.40	1.14
.79	.56	.62	.29
2.07			

Pancro guperex 21/10 DIN $a=40$ on
$\log 1 t$
D

$\mathbf{V} 10$	0.04
0.54	.07
.60	.11
.81	.14
.94	.27
1.08	.60
.21	.75
.35	.92
.48	1.07

Panaro Suparrapida $23 / 10$ DIM $d=4008$
Iog It

D
0.13
.14
.16
.25
.30
-37
.49
.60
.73
.86

$$
\begin{aligned}
& t=2 \text { sec } \\
& i=3.80
\end{aligned}
$$

Lampada "Ogram" 6 v-4.35 t + fi2tro DG 4

Eine pancro 18/10 DIN
 $d=2 m$
.12
.13
.16
.23
.36
.52
.69
.90
.10
.32
.54
.71
.83

Pancro guparax $21 / 10$ DTN $a=2 \mathrm{~m}$

D

$\log 1 t$	
7.10	0.09
0.83	.11
.97	.1 .11
1.10	.13
.23	.19
.36	.28
.49	.45
.63	.70
.76	.92
.90	.11
2.03	.31
.16	.46
.30	.55

Panoro etudio 20/10 DIH

Egnero $\frac{\text { 3uperrapida } 23 / 10 \text { DIN }}{d=2 m}$
\log It
vilo
0.83

D
0.18
.21
.22
.24
1.10
.23
.30
.37
.36
$.49 \quad .67$
.63 .86
$.16 \quad 1.10$
.90
2.03
.29
.16
.30

$$
\begin{array}{rlrl}
t=y^{h} & \text { Lampada "Ogram } 6 \mathrm{~V}-0.25 \mathrm{t} \\
i=0.15 \mathrm{~A} & & + \text { entrro } 304
\end{array}
$$

Fine pancro 18/10 DTN $d=1.20 \mathrm{~m}$
log It

V10 10
1.71
.84
.97
2.11
.24
.38
.52
.65
.78
.92
3.06
D
0.07
.08
.09
.13
.19
.29
.44
.61
.86
1.09
.47
.86

Eancro Etudio 20/10 DIN $\mathrm{d}=1.70 \mathrm{~m}$

$$
\log I t
$$

valo

$$
0.97
$$

$$
1.11
$$

$$
.24
$$

$$
.38
$$

$$
.52
$$

$$
.65
$$

$$
.78
$$

$$
.92
$$

$$
2.05
$$

$$
.18
$$

.32
.45
.59

D
0.11
$+1$
.17
.22
.31
.42
.62
.85
1.08
.26
.46
.63
.79
.87

Enncro guperex $21 / 10$ IIT
$\mathrm{d}=1.70 \mathrm{~m}$

10 g It	D
V .10	0.14
1.24	.17
.38	.18
.52	.20
.65	.26
.78	.37
.92	.05
2.05	.90
.18	.174
.32	.72

Dencro Muperrap1ag 23/40 DIN $\frac{d=1.70}{}$
\log It
velo

$$
1.38
$$

.52
.65
.78
.98
2.05
.18

- 32
.45
.59
.73

D
0.20
.24
.25
.31
.43
.58
.80
.99
1.19
.42
.65
.84

CURVE DI HON RECTPROCITA

$D=0.6$ gul velo

Lastra

0xtogialla

Ortoargncio

0xtob14
ortostudio

Eine orto

Pine pencro

Eanoro atudio

Pancro superex

Eanoro guperrapida
t

1^{h}	-2.80
2 sec	+0.18
$1 / 100$ acc	+1.94
1^{h}	-2.80
2 aec	+0.18
$1 / 100=00$	+1.94

1^{h}	-2.88	2.29
2 gec	+0.18	1.93
$1 / 100$ sec	+1.94	1.64

1^{h}
2 gec $1 / 100$ 玉ec

h	-2.96
2 sec	-0.12
$1 / 100$ sec	+1.64

1^{h}	-2.96	2.56
2 sec	-0.12	2.10
$1 / 100$ sec	+1.64	1.66
1^{h}	-3.30	1.70
2 sec	-0.42	1.49
$1 / 100$ sec	+1.34	1.14
1^{h}	-3.30	2.10
2 acc	-0.42	1.70
$1 / 100 \mathrm{sec}$	+1.34	1.39
h^{h}	-3.30	2.04
2 sec	-0.42	1.67
$1 / 100$ sec	+1.34	1.67

Premettiamo che le curve costruite non vogliono tanto essexe uno gtudio generele della non xeciprocita, quanto uno studio Iimitato al campo che ci interessa. Poiche il nostro soopo di cercare le condizioni optimum di osservazione per ricerohe spettrofotometriche, la zona degli illuminamenti scelte la più opportuna, cosi pure 11 valore delle densità per la quale sono state costruite le curve a densita costante. Gueste curve vogliono fornire un cxiterio di scelta delle lastre, per quel che miguarda la non reciprocita, oltre ad indicare approssimativamente come va corretta la sensibilita commerciale delle emulsioni (che si riferisce a pose istantanee) nel caso delle pose astronomiche; ripetiamo che questa valutazione va intesa solo come approssimata, a causa della impreciaione delle noatre misure.

Da un'osservazione comparativa dei risultati ottenuti
per le divexse emulsiont, possiamo dedurre quento segue. Le misure per Le pose con $t=1^{h}, t=2 \mathrm{sec}$, rientreno nella zona degli $111 u m i n a m e n t i$ minori dell'illuminamento optimum: solo quelle per le pose con $t=1 / 100$ sec si puo ritenere che cadano all incixca nella zona di minimo delle curve. Tutte le Lastre studiate presentano quindi La massima afficienza per pose istantanee con alti 111 uranamenti. Questo risultato era prevedibile, tenuto conto che le lastre in commeroio vengono costruite per scopi pratici, con particolare riguaredo alle pose brevi. Confrontando 1 due gruppi di curse si puo rilevere che come andamento generale, le lastre ortocromatiche presentano una non reciprocita Lievemente più maroata delle panoromatiche. Questa diversuta di comportamento potrebbe essere attribuita al fatto che le lastre pancromatiche studate henno grana notevolnente piu grossa delle ortocromatiche, cio significa che a paxità di illuminamento, ogni granulo riceve un maggior munero di fotoni al secondo. Ma 11 processo di disintegrasione della traccia per
agitarione termica, che abbiamo visto essere la causa determinante della non reciprocita, alle basse intensità, avvene tonto più facilmente quanto minore è 11 numero di fotoni che arrivano per secondo sul granulo. Quindi a parita di Huminamento esso ef faciliteto dalla grana fina e ostacolato dalla grana grosea.

Questa spiegazione varrebbe anche a giustilicare lapon reciprooita piuttosto spiccate presentata dalle lastre Fine-pancro etine-orto (che hamo grana molto fine), nei confronti rispettivanente delle altre pancromatiche e ortocromatiche. Per quel che miguarda la Pine-orto, osserviamo che essa + notevolmente meno sensibile della orto studio, la cui sensibilita in gredi DIN: denunciata della easa di produrione, dovrebbe essere la stessa. Questo potrebbe essere dovuto o alla diversa sensibilith spettrale delle due lastre (ricordiamo che le curve di emissione delle nostre sorgenti sono state corrette con un filtro BG 4), oppure al fatto che, come abbiamo
gid detto, le sensibilita dei prodotti in commercio vengono valutate per illuminaments piti alti di quelli at oui noi ci slamo swrviti.

Di tutte le ortocromatione quella che perde meno in efficenza verso le deboll intensita, sembra esgere la ortoblu, che quindi, almeno da questo punto di wista, puo escere considemata come la pith consigiabile per micerohe astrofisiche. Le pencromatiche, ecettuata la Finempanoro, non sembrano presentare differenze notevoli di comportamento: da osservare le merceta sencibllite della pencro studio nei confronti delle due lastre Superex e Suerrapida, ambedue a sensibiIlta dichiarata notevolmonte meggione. Un criterio preferenziale potrebbe essere tenuto nez confronti della Superrapida, La oul efficenza relativa è buona per le pose atronomicho.

Ca. WII - COYTORTANENYO DELTE MTUSTON SMUDTATE NEI CONFRONTI DELIE MISURE SPETTROTOTOWETRIOHE:

I1. comportamento delle emulsioni per quel che concerne la non reciprocità, non è che uno dei molteplici aspetti sotto i quali va considerata una lastra per decidere se essa è più o meno consigliabile per xicerche spettrofotometriche. Won dobbiamo dimenticare che tutte le altre proprieta dell'emulsione, quali la grana, il contrasto, il potere risolutiWo, eco. considerate nel loro complesso, possono anche portaxe a un responso più o meno contrastante con quello da noi dato per le diverse lastre. I nostri risultati avranno quindi valore quando sarenno inquadrati in uno studio piu generale delle proprietà delle emulsioni: tale studio esorbita dai limiti impostici nel nostro lavoro di tesi, ma per avere un'idea delle conclusioni a cui esso può portare per le lastre da noi studiate, abbiano eseguito una serie di spettri tipici di stelle di tipo al riflettore prismi dellos-
servatorio di dreetri, (4.225 cm , apertura $=30 \mathrm{om}$. due priani con aptgolo di $60.1+80.0$, di flint ,)

Le mtelle gcelte mono 16 Vulpeculae, di tipo $P O$, e β Delphini, di tipo T3. Della prima (di grandezza 5.32), * stata eseguita una serie di tre gpettri, rispettivamente con $2^{\text {mi }}, 5^{\text {m }}, 12^{\text {m }}$, di posa su ognuna delle lastre ortocromam tiche, la sexa del 24/VIIIf48 con Wigibilith buona condizioni del cielo comtanti. Della meconda si sono eseguite pose di $2^{\text {m }}, 4^{\text {m }}, 8^{\text {mim }}$ tanto sulle lastre panoromatiohe che gulle oxtocromatiche. Le onservasioni wono tate fatte in diverge sere frail 25 /VIII e $116 / \mathrm{XX}$, perchè henno dovuto enere frequentemente interrotte a causa delle peggiom rate condizioni atmonferiche.
futte le lastre sono atate wiluppate con aviluppo "R $10^{\prime \prime}$ finegranulante, per $6^{\text {mi }}$ a $21^{\circ} 0$. Difogni lastra mono stati eseguiti dei microfotogrami al microfotometro autoregistratore enistente nello stesso Ose servatoxio di Aroetri. La zona di mpettro studiata compren-
de le righe H e K del Caicio II, e le righe $\mathrm{H}_{\gamma}, \mathrm{H}_{\delta}, \mathrm{H}_{\varepsilon}, \mathrm{H}_{\zeta}$, H_{η}, della serie di Belmer. Lo studio di questi microlotogrammi ci ha permesso ai integrare in parte i risultati ottenuti per le nostre emanioninei confronti della non reciproeità, edi sottolinearne il valore per quel che concerue la spettrofotometria, con partioolare riguardo alla quale essi erano stati espressamente ottenati.

Osservendo 1 microfotogrammi di β Delphini per le lam stre pancromatiche, possiamo subito constatare la scarsissima sensibilità della Tine pancro, che per le pose suddette non da spettri misurabili nel violetto. I'untco valtage gio che ha tale lastra sulle altre, è dovuto alla sua grana, la cui finezza a posta nel massimo xilievo dal miceriotograma. L'uso di questa lastra è consigliato perciò solo per ricerche spettroscopiche con sorgenti molto intense. Nella Superex nella Superrapida le misure sono disturbate dal velo, che molto alto, specia nella seconda; in ambedue queste lastre la grana notevolmente gressa, masche-
ra completamente le righe degli spettri piu deboli. Nesegue che la Superrmpida il oui uso sembrava preferibile dal punto di vista della non reciprocita, è invece meno consif gliabile quando si tenga conto degli inconvenienti suddetth. Buono è il rendimento della Pancro studio, la cui notevole sensibilita nel blu-viola conferma i risultati da noi precedentement ottenuti in laboratorio, che de righe ben definite anche nello spettro piu debole.

Per quel ohe riguarda le ortocromatiche, possiamo rilevara dal confronto dei microfotogramm, una posigione di vantaggio delle due lastre pis lente, ortogialla ortoarancio, rispetto alle altre. Queste lastre, a grana piu fina o quindi a magion potere risolutivo, permettono di distinguere alcune righe metalliche di debol intensith, non visibili nelle altre: inoltre al loro contrasto elevato è doruta la Haggior definizione delle righe piu intense, come wi può congtatare dal profilo di tall tighe dalle misure delle trasparenze relative.

Cap. VIII - GENMO SUL PROBLEMA DRKLA DETERMINGZONE DEL LIMITE DELLE PEESTAZIONI ORVENTBIUI

Abbiamo accennato nell'Introdugione al problema di determinar il Limite delle prestazioni ottonibili da un riflettore a primi. Vogliano vadere ora un poco pilu da vicino. sotto quale aspetto si prewenta tale probloms, quale intemese avrebbe la sua noluzione miportara a titolo di egempio circa 10 poseibilita dello trumento, le misure reLative ad alwun spettwi eagguti in condizioni generalı d'eperienza favorevoli.
 oomne telegopio nel quale uno o pin prismi mono interposti drettamente whi camano dei raggi Luminosi. prima ohe questi axavino al rillettore. IL vantaggio presentato da questo memplice dispositivo, xispetto allo spettroscopio applicato alla fendtuxa del telescopio, è di permettere la fotom
grefia di apettri di stelle molto deboli e di consentire di Lotografare contemporaneamente gi spettri di tutte le stelLe presenti nel campo del telescopio. Hsao infetti elimina sLa la fenditura che 11 collimatore protittando del fatto che le stelle sono sorgenti a distanza praticamente infinita, o suificentemente piocole per essere considerate puntifoma. Il riflettore a prism e quindi particolamente indim catoquando ai voglia eseguire uno studio sistematico di un gren numero di stellesituate nella stessa zona del cielo, e per la olassificazione di stelle deboli net diversi tipi spettriti。

Quendo pero si vogliano eseguixe misuxe di spettrofotometria, $i l$ rillettore a prismi presenta notevoli inconvenienti: Le immagini delle stelle al fuoco dello strumento non sono puntiformi, quinitit gli spettri che se ne ricavano come se fonsero eseguiti con la fenditura molto larga. Ne viene che le righe comprese in wno stesso intervallo di lunghezze d'onda si "impastano". sovrapponendosi le une alle
altre, e l'intensite equivalente di ogni raga visibile nel10 spettro, in realtà \& la amma delle intensità equivelenti di tutte le mighe ohe cadono nell"intervallo dello spettro occupato dalla riga stessa.

D'altra parte negli Osservatori i cui telescopi non sono dotati di spettrografo a fenditura, at rende necessario eseguire le ricerche astrofisiche di fotometria spettrale al riflettore a prismi, ed percio di notevole interesse la conoscenza del significato che hanno le misure ricavate in confronto di quelle analoghe ottenute con la fenditura, e del limite massimo delle prestazioni al quale il nostro strumento può arrivare.

II problema si puo porre in questo senso: abbiamo la possibilita di variaxe la dispersione (o variando la focale nelka combinazione Cassegrain, o aumentando 10 spigolo rie frangente dei prismi), e inolte di variare la sensibilita e il potere risolutivo dell'emulsione. In quale direzione conviene di muoverci?

Una risposta a tali domande verrebbe ad integrare il lavo-

Yo da noi precedentemente compiuto sul comportamento delle emulsioni, nell'ambito della questione pit generale della ricerca delle conditiont Mopthum di ossexveztone pex weem che as spettrofotometrie.

Nol ai linttiamo qui a riportare i dati micavati da pose eseguite su alcune stelle ai tho B, in condizioni atrosferiche particolamente fevorevoli, su Lastre spettroscopiche Kodak di tipo III O TV O, ad alto potexe risolutivo. Tali dati, precisamente 11 numero e lintensita delle righe visibili, possono Lomire, a copo puramente illustratiVo, unindicazione cinca le possibilita di rendimento del rimettore a prismi.

Di ognt spettro si sono lette al micrometro le distenze relative delle varie righe, e da queste, per mezzo della form mula di Corm-Hartman, shano misaliti alla determinazione delle lunghezre d'onda inoltre abbiamo egeguito una stima visuele approsplneta dell Intensitw delle righe, tenuto conto alla maggiore o minore intensita del fondo continuo.

Lastra "Kodek" - III 0
Pose eseguite il $2 / 3 / 48$ sulle seguenti stelle:

$$
\begin{aligned}
& \tau \text { Orionis }-B 5-t=4^{\text {m }} \\
& \checkmark \text { orionis -0e5- } t=3 \text { m } \\
& \begin{array}{l}
22 \text { Orionis - B3 } t={ }^{\text {O }}=3 \text { m } \\
\delta \text { Orionis - BO } t=2^{2}
\end{array}
\end{aligned}
$$

Lastra "Kodak" - IV O
Poge geguite $112 / 3 / 48$ gulle seguenti gtolle:

$$
\begin{aligned}
& \beta \text { orionis }-B 8 \mathrm{p} \quad \mathrm{t}=\frac{\mathrm{m}}{\mathrm{~m}} \\
& \text { k Orionis }-B 0-t=6_{m}^{m} \\
& \varepsilon \text { Orionis-BO - } \quad=2^{2} \\
& \begin{array}{l}
\text { Yorionis - }-30-t=2_{m} \\
\gamma \text { Oxionis }-B 2-t=2^{m}
\end{array}
\end{aligned}
$$

CONCOESIONE

II problena ohe of eravano posti nell'introduatone cif aveva condotti glla riceras delle condicioni di osservazione piu opportune per ottenere da un'esperienza relativa a ricerche spettrofotometriche i risultati piu eapressivis limbtatanente alle possibilita dello strumento.

Hoi abbiamo cercato di xisolvere un lato di tale problema, per quel che riguarda il materiale fotografico, studian do 11 comportamento delle amisioni nei riguard della non reciprocita tra 111 uminameti e tempi di posa, ohe tree con se notevoli inconvenienti quando si eaeguiscono pose di tipo astronomico, specialnente per le stelle piad deboli.

Alcuni cenni sul lavoro compiuto da ditri sperimentatori in questo campo, oi hamo permesso di introdurre in problema e di inquadraxio del punto di vista storico.

Siamo pli pasati a un'esposizione quantistica delle teorie che spiegano 11 fenomeno della formazione dell'immagine latente, dalle quali si puo traxre una giustificazione
teorica della non reciprocitb.
\& questa trattazione abbiario fatto seguire la descriziom ne e la discussione dai risultati, dello studio sperimenta$1 e$ da nol eseguito per stabilixe 11 comportamento di alcune emulsioni comunemente in uso per osservezioni astronomiohe, net miguaxd della non reciproctte.

Infine abbiano cexcato d completaxe 1 cisultati ottenuti. eseguendo gulle emulaioni in istudio alouni spettri stellam tiples. 11 cut andamento stato studsato con misure microfotografiche.

Da bitimo abbiamo accenato al problema di stabilire qua1. siano le prestazioni ottenibili da un riflettore a prismi, basandoci sulle misure eseguite pow Le whege deghi spettri di ploune stelle at tipo B.

H. Grouiller - "genaitométrie spectrale t photometrie photographique Astronomique" Publioationa de lobsexvatoire delyon Vol.IT. Pa

Wantman Kodak Comp - "Photographic plates for use in Speotroscopy and Amtronomy* New Yorix 1943.
curney Mott - MTcoriadella fotollit dall'AgBr e del1.imagine latente lotografica." Proc. Royal sociaty 1938-164 A.
K. Mees - "The theory of the photographic process" Now York 1944.
 l"imagine latente nogli etrati fotogr." Rendic. Acc. Naz. Lincii - maggio 1946.
S. Rosseland - "Theortical Astrophisios" axpord 1936.
Q. Righini - Mprofilo vero etrumentale delle righe mpettral. pubblicaz. di Axotristasc. 60.

I H D I

Introduzione
Pag. 1

Cap. I .. Notizie storioh 5
Cap. II - Conseguenze della mancanza di reciprocita agit efetti delle fotografia astro nomica

Gap. LIF - Reoxia dell'eftetto ai non reciprocita.

1) - Mipendanza della non raciprocità da altri parametri :
2) - Tooria della formazione dell'inmagine latante adoondo Gurney a mott
3) - Teoría quantimtica curve teoriohe dsile non reciprociter
4) - Effetti di alte bacma intensità - dipendenza dalla terperstura..." 31
b) - Dipendenza dalla Lunghezza d'onda " 38

Cap. IV - Come ai. contruisce una ourva sposimental. as non raciprocita

Jap. V - Demoriaione del dicpogitato sperimentaie. " 445
Gag. VI - Digcumaione ats razultati gporimentali of " 71
Cap. VII - $\begin{aligned} & \text { Comportmanto delle sulaioni studiate } \\ & \text { nei vontronti dalle miaure apettrofotomen }\end{aligned}$

Cap.VILI - Genno gul problema dalla detarminazione del limite delle prestazioni ottonibili da un rillettore a prismi........................... 80

" 87
Conelusione
17 89
Bibliogratia

